Mehr Frauen in den STEM-Fächern als Männer

Eine interessante Meldung:

Despite the mainstream belief that women are underrepresented in Science, Technology, Mathematics, and Engineering (STEM) degrees, a new report out of the American Enterprise Institute (AEI) shatters this myth.

Mark Perry, a University of Michigan-Flint professor, appears to be the first to discover that the „STEM gender gap“ doesn’t exactly exist after all. According to his recent AEI report, women now earn 50.6 percent of all STEM Bachelor’s, and are also overrepresented in graduate school.

Dürfte auch daran liegen, dass mehr Frauen an die Universitäten gehen und das STEM ein weites Feld sind.

While 50.6 percent is only a slight majority — this translates into 8,500 more female STEM graduates per year, and about 33,000 more women in STEM grad school. And because college is now a woman’s domain, it’s likely these small disparities will expand over time.

Due to this, Perry urged activists to focus their efforts elsewhere.

„I think it’s time to stop the massive and expensive ‘social engineering’ efforts to force women to go into the STEM fields,“ Perry told PJ Media on Sunday. He also pointed out that while women are excelling in STEM overall, disparities remain among certain fields.

Ich befürchte die Bemühungen werden nicht so schnell zu Ende sein. Denn die Verteilung ist eben noch sehr Biologie lastig:

Wer bei STEM eher die klassischen technisch-mathematischen Bereiche vor Augen hat, der berücksichtigt eben nicht, dass Biologie und Medizin bzw der Gesundheitsbereich davon ebenfalls umfasst sind und einen sehr Anteil an Frauen aufweisen. Erstaunlicherweise gelingt es hier, in diesen eher auf Lebewesen bezogenen Bereichen, Frauen problemlos die alten Vorurteile zu durchbrechen, in anderen Bereichen hingegen eben nicht. 

 

Räumliches Denken und mathematische Fähigkeiten

Eine interessante Studie behandelt die Frage, inwiefern räumliches Denken und mathematische Fähigkeiten in einem Zusammenhang stehen:

Despite considerable interest in the role of spatial intelligence in science, technology, engineering, and mathematics (STEM) achievement, little is known about the ontogenetic origins of individual differences in spatial aptitude or their relation to later accomplishments in STEM disciplines. The current study provides evidence that spatial processes present in infancy predict interindividual variation in both spatial and mathematical competence later in development. Using a longitudinal design, we found that children’s performance on a brief visuospatial change-detection task administered between 6 and 13 months of age was related to their spatial aptitude (i.e., mental-transformation skill) and mastery of symbolic-math concepts at 4 years of age, even when we controlled for general cognitive abilities and spatial memory. These results suggest that nascent spatial processes present in the first year of life not only act as precursors to later spatial intelligence but also predict math achievement during childhood.

Quelle: Spatial Processing in Infancy Predicts Both Spatial and Mathematical Aptitude in Childhood (Volltext)

Aus den Werten:

Räumliches Denken und Mathematik

Räumliches Denken und Mathematik

Also niedrige bis mittlere Werte.

Aus einer Besprechung der Studie:

Spatial reasoning measured in infancy predicts how children do at math at four years of age, finds a new study published in Psychological Science.

„We’ve provided the earliest documented evidence for a relationship between spatial reasoning and math ability,“ says Emory University psychologist Stella Lourenco, whose lab conducted the research. „We’ve shown that spatial reasoning beginning early in life, as young as six months of age, predicts both the continuity of this ability and mathematical development.“

Was dem Patriarchat wenig Zeit lässt für eine Unterdrückung, aber hoch effektiv wie es ist hat es das sicherlich dennoch geschafft.

Emory graduate student Jillian Lauer is co-author of the study.

The researchers controlled the longitudinal study for general cognitive abilities of the children, including measures such as vocabulary, working memory, short-term spatial memory and processing speed.

„Our results suggest that it’s not just a matter of smarter infants becoming smarter four-year-olds,“ Lourenco says. „Instead, we believe that we’ve honed in on something specific about early spatial reasoning and math ability.“

Gerade wenn es eine eigene „Fähigkeit“ auf dem Bereich gibt, dann kann es dort natürlich dann auch Unterschiede  und besondere Begabungen geben, die gerade diesen Bereich betreffen.

The findings may help explain why some people embrace math while others feel they are bad at it and avoid it. „We know that spatial reasoning is a malleable skill that can be improved with training,“ Lourenco says. „One possibility is that more focus should be put on spatial reasoning in early math education.“

Es dürfte auch erklären, warum einige dieses Training mehr Spass macht oder sie sogar von sich aus eher „Training“ in diesem Bereich betreiben, einfach in dem die Kinder zB lieber mit Spielzeug spielen, was diese Fähigkeiten fordert, während Kinder, die in dem Bereich nicht gut sind, keinen Spass an diesem Spielzeug haben.

Previous research has shown that superior spatial aptitude at 13 years of age predicts professional and creative accomplishments in the fields of science, technology, engineering and math more than 30 years later.

To explore whether individual differences in spatial aptitude are present earlier, Lourenco’s lab tested 63 infants, ages six months to 13 months, for a visual-spatial skill known as mental transformation, or the ability to transform and rotate objects in „mental space.“ Mental transformation is considered a hallmark of spatial intelligence.

The researchers showed the babies a series of paired video streams. Both streams presented a series of two matching shapes, similar to Tetris tile pieces, which changed orientation in each presentation. In one of the video streams, the two shapes in every third presentation rotated to become mirror images. In the other video stream, the shapes only appeared in non-mirror orientations. Eye tracking technology recorded which video stream the infants looked at, and for how long.

This type of experiment is called a change-detection paradigm. „Babies have been shown to prefer novelty,“ Lourenco explains. „If they can engage in mental transformation and detect that the pieces occasionally rotate into a mirror position, that’s interesting to them because of the novelty.“

Eye-tracking technology allowed the researchers to measure where the babies looked, and for how long. As a group, the infants looked significantly longer at the video stream with mirror images, but there were individual differences in the amount of time they looked at it.

Fifty-three of the children, or 84 percent of the original sample, returned at age four to complete the longitudinal study. The participants were again tested for mental transformation ability, along with mastery of simple symbolic math concepts. The results showed that the children who spent more time looking at the mirror stream of images as infants maintained these higher mental transformation abilities at age four, and also performed better on the math problems.

Langzeitstudien sind bei so etwas immer interessant. Und bereits sehr junge Kinder können die verschiedensten Nachrichten über geschlechtliche Fähigkeiten in dem Bereich auch noch nicht aufgenommen haben.

High-level symbolic math came relatively late in human evolution. Previous research has suggested that symbolic math may have co-opted circuits of the brain involved in spatial reasoning as a foundation to build on.

„Our work may contribute to our understanding of the nature of mathematics,“ Lourenco says. „By showing that spatial reasoning is related to individual differences in math ability, we’ve added to a growing literature suggesting a potential contribution for spatial reasoning in mathematics. We can now test the causal role that spatial reasoning may play early in life.“

In addition to helping improve regular early math education, the finding could help in the design of interventions for children with math disabilities. Dyscalculia, for example, is a developmental disorder that interferes with doing even simple arithmetic.

„Dyscalculia has an estimated prevalence of five to seven percent, which is roughly the same as dyslexia,“ Lourenco says. „Dyscalculia, however, has generally received less attention, despite math’s importance to our technological world.“

Ich finde die Studie auch gerade interessant, weil Geschlechterunterschiede im räumlichen Denken sehr gut belegt sind und auch viele Studien dazu existieren, die eine Abhängigkeit vom (pränatalen) Testosteronspiegel sehen:

Es passt insoweit, dass diese in jungen Jahren bereits erkennbar sind.

Dazu auch hier im Blog:

Warum brillante Frauen eher Karrieren außerhalb der STEM-Fächer wählen

Ein interessanter Artikel führt Gründe an, die eher dazu führen, dass Frauen sich nicht für Berufe in den „STEM-Fächern“ (Naturwissenschaften, Technik, Ingenieurwissenschaften und Mathematik) entscheiden.

Der erste liegt in „Sachen vs Personen“

Things versus people.Su et al (2009) performed a meta-analysis of studies including a total of over 500,000 people examining gender differences in interests.  Despite claims that gender differences are typically “small” (Hyde, 2005), Su et al found a gigantic gender difference in interests.  Women preferred working with people, whereas men preferred working with things, a preference that is detectable within the first two days of birth and among our close species relatives, rhesus monkeys!  To be sure, these differences were not absolute.  Not every man prefers working with things, and not every woman prefers working with people.  But the effect size was d= .93, and even if you are not familiar with effect sizes, this would make it one of the largest effects in social psychology; it is gigantic.

Dieser grundlegende Unterschied war hier auch schon häufiger angesprochen worden. Der Effekt scheint mir sehr robust immer wieder bestätigt zu werden und erklärt, warum Frauen ehemals rein männliche Fächer wie Medizin oder Jura recht problemlos eroberten, während die STEM-Fächer insgesamt einen geringeren Anteil an Frauen haben.

JUST math skills versus math and verbal skills.  This same issue of differing interests was approached in a different way by Wang, Eccles, and Kenny (2013). Disclosure: Eccles was my dissertation advisor and longterm collaborator; I am pretty sure she identifies as a feminist, has long been committed to combating barriers to women, and is one of the most objective, balanced social scientists I have ever had the pleasure to know.

In a national study of over 1,000 high school students, they found that:

1. 70 percent more girls than boys had strong math and verbal skills;

2. Boys were more than twice as likely as girls to have strong math skills but not strong verbal skills;

3. People (regardless of whether they were male or female) who had only strong math skills as students were more likely to be working in STEM fields at age 33 than were other students;

4. People (regardless of whether they were male or female) with strong math and verbal skills as students were less likely to be working in STEM fields at age 33 than were those with only strong math skills.

Here are their conclusions, in their own words (p. 5):

“Results revealed that mathematically capable individuals who also had high verbal skills were less likely to pursue STEM careers than were individuals who had high math skills but moderate verbal skills. One notable finding was that the group with high math and high verbal ability included more females than males…

Our study provides evidence that it is not lack of ability that causes females to pursue non-STEM careers, but rather the greater likelihood that females with high math ability also have high verbal ability and thus can consider a wider range of occupations than their male peers with high math ability, who are more likely to have moderate verbal ability.”

Ich vermute, dass Leute mit guten sprachlichen Eigenschaften auch lieber mit Leuten zusammenarbeiten und Leute mit entsprechenden schlechten Eigenschaften auch eher darauf verzichten. Interessant ist, dass sich dies bei Männern ebenso zeigt. Auch die, die dort beide Fähigkeiten haben wählen eher andere Fächer. Das macht eine reine Beeinflussung durch Geschlechterrollen unwahrscheinlicher.

Es wäre demnach eine Unterscheidung zwischen verschiedenen Stärken vs eine Entscheidung in einem Bereich zu arbeiten, in dem man besonders gut ist. Es passt im übrigen auch zu dem Klischee des Nerds und Geeks, dessen Kompetenzen eher nicht im sozialen Bereich liegen.

Ein weiterer Faktor wären die reinen Zahlen:

The Numbers

The Council of Graduate Schools puts out regular reports, such as this one, that include the gender distribution in various fields.

Council of Graduate Schools
Source: Council of Graduate Schools

Lo and behold, there is not “pervasive evidence of” a gender gap in graduate enrollments, though there is a gap in some STEM fields. Completely consistent with the work by Su et al and by Wang et al, in nearly all fields that are about people, not only is there no gap disadvantaging women, there are actually more women than men! (Health, education, social and behavioral sciences, public administration, arts and humanities, and even biological sciences).  The same report found that, overall, across all fields, the „gap“ is in the „wrong“ direction: 57 percent of enrollees in graduate programs are women.

Even if there is discrimination against women in these fields, it is not preventing women from entering those fields in droves. (Indeed, the logic of “gap = discrimination”—a logic I have repeatedly rejected but which runs rampant throughout the social sciences and general public—would have us believe there is widespread discrimination against men in most fields now).

Furthermore, this pattern is completely consistent with the idea that girls and women have different interests (Su et al) and skills (Wang et al) that lead them to prefer non-STEM careers.

Frauen studieren, nur eben lieber andere Fächer. Wenn es mit Leuten und Leben zu tun hat, dann sind sie dort weitaus eher zu finden als in Fächern, die sich damit weniger beschäftigen.

Auch interessant ist der folgende Absatz:

Surely girls and women have, historically, been discriminated against in such fields.  But discrimination in 1950 or 1970 does not constitute evidence of ongoing discrimination.  Furthermore, the evidence that girls and women prefer non-STEM fields is not an argument to avoid combating sexist discrimination where it can still be found.  Nonetheless, the list of social science victim2 groups is so long, that, most likely, almost all of us have been the target of discrimination or hostility at some point in our lives, rendering the question of whether some groups are more victimized than others muddier than it seems.

However equivocal the evidence for “bias” in the present may be as an explanation for the gender gap in STEM fields, there is ample evidence of bias. Scientific bias! Social scientists clearly „prefer“ bias explanations over other, deeply important, scientifically rigorous, social developmental evidence, such as that offered by Su et al and Wang et al.  This table reveals just how extreme this bias is:

Lee Jussim
Source: Lee Jussim

The key entry here is the citation counts in the far right.  The Moss-Racusin study is, by conventional standards, the weakest of the studies.  Its sample size is a fraction of that of the others.  It studies a relatively minor situation (hiring lab managers).  It was a single study (Su et al is a meta-analysis of scores of studies; Williams and Ceci reported five separate studies).  In contrast to Wang et al, it only studied an event at a single time point; it did not follow people’s career trajectories.

This does not make Moss-Racusin et al a “bad” study; it is merely weaker on virtually all important scientific grounds than the others.  This is not to argue that the other studies are “perfect,” either; all studies have imperfections.  But by conventional scientific standards, Su et al’s meta-analysis, the replications in Williams and Ceci, the longitudinal Wang et al study, and the far larger sample sizes in all three mean that, on most scientific methodological standards, they are superior to the Moss-Racusin et al study.

And yet, look at the citation counts.  Others are citing the Moss-Racusin et al study out the wazoo. Now, Wang et al and Williams and Ceci came out later, so probably the most useful column is the last.  Since 2015, the weaker Moss-Racusin study has been cited 50% more often than the other three combined!  That means there are probably more papers citing the Moss-Racusin et al study and completely ignoring the other three, than there are papers citing even one of the other three! What kind of „science“ are we, that so many „scientists“ can get away with so systematically ignoring relevant data in our scientific journals?

(Again, this does not make the Moss-Racusin study “bad.” The bias here reflects a far broader field problem, it does not constitute a weakness in the paper itself).

And that, gentle reader, is a gigantic scientific bias.  It might even be beyond bias. Some might call it an “obsession” with discrimination and bias so severe that it is blinding many in our field to major findings regarding gender differences that contribute to preferences for different types of fields.   

Wer eine Benachteiligung von Frauen behauptet, der wird also wesentlich häufiger zitiert als jemand, der eine Bevorzugung von Frauen behauptet. Die Benachteiligung von Frauen ist die „gewünschte Geschichte“, an rationalen Erklärungen dafür ist man nicht interessiert. Das Opfernarrativ muss eben auf jeden Fall erhalten bleiben. Ob es Frauen zusätzlich abschreckt und damit zu weniger Frauen in dem Bereich führt ist dabei wohl eher egal.

Das Schlußwort ist auch interessant:

If this analysis has any validity, the societal push to equalize gender distributions may be deeply dysfunctional, because it can succeed only by having the perverse effect of pushing people into fields they do not prefer. Of course, on moral grounds, we want to insure that all people have equal opportunities to enter any particular career.  But if there are bona fide gender differences in preferences and interests, equal opportunities may never translate into equal outcomes.

Was auch der Grund dafür ist, dass eine reine Gleichstellungspolitik eher Ungerechtigkeiten produziert, weil Unterschiede ausgeblendet werden.

Sind die Naturwissenschaften zu wettbewerbsorientiert und die Sprache zu schwer für Frauen?

Feministische Forschung beleuchtet die Naturwissenschaften:

This study explored the gendered nature of STEM higher education institution through a feminist critical discourse analysis of STEM course syllabi from a Midwest research university. I explored STEM syllabi to understand how linguistic features such as stance and interdiscursivity are used in the syllabus and how language and discourses used in the syllabus replicate the masculine nature of STEM education. Findings suggest that the discourses identified in the syllabi reinforce traditional STEM academic roles, and that power and gender in the STEM syllabi are revealed through exploration of the themes of knowledge, learning, and the teaching and learning environment created by the language used in the syllabus. These findings inform and extend understanding of the STEM syllabus and the STEM higher education institution and lead to recommendations about how to make the STEM syllabus more inclusive for women.

In der Studie heißt es dann:
Finally, a review of the syllabi for gendered language and discourses involves an exploration for the discourse of STEM higher education as creating a chilly climate, one that is difficult, competitive, and lacks support. The syllabi explored in this study promoted a view of the classroom as academically difficult, with high standards that were not flexible. For example, “please be reminded that all writing you do in this course will be expected to meet a certain standard of competency and quality” (Lower level geology). The language used promotes the idea that the high standards of the course were inflexible and difficult, and exceptions would not be made if students could not meet expectations. That difficulty is reinforced through the use of comprehensive exams,
“Each exam is semi-comprehensive. And the final exam is fully comprehensive. This means that tests may contain information from throughout the semester” (Lower level geology). Also reinforcing the difficulty of the courses was the treatment of prerequisites as skills or topics that the instructor would not have time to cover in the course. Good algebra and trig skills are essential if you expect to be successful in this course. In addition, you are expected to have sufficiently mastered the material
in Calculus I to be able to use it when needed. We will not have time in this class to devote to prerequisite materials (Lower level math).
Instead of only listing prerequisite courses, these syllabi included prerequisite knowledge and skills, creating an even more intimidating view of the course. That language implied that not only would students be held to difficult high standards, but also that there was also a base of knowledge that was required to be successful in the course. While it is not unrealistic to include prerequisites in a syllabus, the language used to discuss the prerequisites indicated that students who had not learned or did not remember that knowledge would be unsuccessful because there was not support within the course or from the instructor. The language used in this corpus of syllabi created an impression of extremely difficult courses, which contributes to the chilly climate in STEM courses, and would be prohibitive for those not confident in those areas, such as women and minorities. Additionally, a chilly climate is reinforced with a focus on the individual instead of the group and is a characteristic of a masculine learning environment (Mayberry & Rose, 1999).

Also das Erwarten von hohen Leistungen und und die Betonung der Leistungen des Individuums statt der Gruppe schrecken Frauen ab, weil es einfach eine männliche Sache ist, alleine Leistung zu zeigen, während Frauen nur in der Gruppe stark sein können.
Weiter heißt es:
Another aspect of the chilly climate is competitiveness, and the STEM syllabi were also framed as competitive courses, exemplified by grading on a curve, “The final grading scale may be curved based on class performance” (Lower level biology). Grading on a curve is one way that the literature has found to be competitive and discouraging to women and minorities (Shapiro & Sax, 2011). Finally, the competitive, difficult chilly climate was reinforced in the syllabi through the use of unfriendly and tough language, “Do not ask me to figure out your grade standing. I’ll be glad to show you how to do it yourself, but the homepage includes that explanation already” (Lower level geology). Like this statement, many of the syllabi used language that was unfriendly and reinforced the individualistic, difficult and competitive nature of the STEM classroom. Throughout the syllabi, the chilly climate was reinforced through language use and the selection of assessments and teaching methods.
Wettbewerb ist eben nichts für Frauen. Das ist der Stand dieser feministischen Studie. Es wundert da wenig, dass Frauen dann nicht Geschäftführer, Politiker oder sonstige Personen in hohen Positionen sind. Ein Mann, der passende Textpassagen als eigene vortragen würde hätte wahrscheinlich in kurzester Zeit einen Shitstorm a la Tim Hunt auf sich gezogen.
Es zeigt auch mal wieder das Doppeldenk im Feminismus: So eine Studie geht da durchaus durch, es gilt dann die Erzählung, dass Frauen eben auf andere Weise Erfolg haben als Männer und zarte Pflänzchen sind, die aber genau die gleiche Leistung bringen. Es ist eine Form des Differenzfeminismus der aber sofort wieder in Gleichheitsfeminismus umschwenkt, wenn man Frauen vorhalten würde, dass sie bestimmte Eigenschaften nicht haben.
Zudem heißt es:
In response to research question three, gender is not explicitly referenced within this corpus but the masculine or male-biased views of knowledge, learning and teaching that are seen in the STEM education institution are reinforced in the syllabus. Throughout the syllabi, knowledge is represented as static and unchanging, with some nods to collaborative and active learning to encourage students to acquire course content. Language used in the syllabi reinforces the unfriendly and difficult nature of STEM courses, and STEM teaching is framed as the instructor’s role to deposit static knowledge into students. In those ways, the syllabi replicate the gendered STEM education institution and are gendered to the disadvantage of women.

Lustig. Männliche Arten des Wissens, des Lernens und des Lehrens sind also:
  • es gibt gesichertes Wissen
  • Der Lehrer bringt es bei

Weiblich wäre anscheinend eine subjektive Sicht auf Wissen. Wie soll man sich das feministisch korrekt vorstellen: E=mc2? Auch nur so eine sexistische Gleichung, die die Lichtgeschwindigkeit priviligiert. Berechnungen in der Physik? Masse kann auch durch gute Worte Empowerd werden, alles andere ist Massshaming.

Gut, dass wir die feministische Forschung haben. Endlich wissen wir, dass Wettbewerb nichts für Frauen ist und sie nicht damit umgehen können, wenn es auf harte Leistung ankommt.