Selbermach Samstag 323 (16.01.2021)

Welche Themen interessieren euch, welche Studien fandet ihr besonders interessant in der Woche, welche Neuigkeiten gibt es, die interessant für eine Diskussion wären und was beschäftigt euch gerade?

Welche interessanten Artikel gibt es auf euren Blogs? (Schamlose Eigenwerbung ist gerne gesehen!)

Welche Artikel fandet ihr in anderen Blogs besonders lesenswert?

Welches Thema sollte noch im Blog diskutiert werden?

Für das Flüchtlingsthema oder für Israel etc gibt es andere Blogs

Ich erinnere auch noch mal an Alles Evolution auf Twitter und auf Facebook.

Wer mal einen Gastartikel schreiben möchte, auch gerne einen feministischen oder sonst zu hier geäußerten Ansichten kritischen, der ist dazu herzlich eingeladen

Es wäre nett, wenn ihr Artikel auf den sozialen Netzwerken verbreiten würdet.

Transexualität, die Blut-Hirn-Schranke, Hormonrezeptoren und Aromatase

In einer Twitterdiskussion auch zum Thema Transsexualität führte ich an, dass Transsexualität aus meiner Sicht im wesentlichen eine Abweichung des Gehirngeschlechts und evtl des Bodyplans von dem Geschlecht des übrigen Körpers ist. Gerade aus dieser Abweichung ergibt sich die „Tragik“ der Transsexualität, die viele mit „im falschen Körper stecken“ beschreiben.

Dagegen wurde angeführt, dass es ja keinen Grund gebe, dass man von einem Gehirngeschlecht sprechen müßte, genauso könne man anführen, dass der kleine Finger ein anderes Geschlecht habe. Warum sollte gerade das Gehirn ein anderes Geschlecht haben und nicht andere Körperteile?

Die Frage ist berechtigt, so dass ich es hier – durchaus auch um es für mich selbst einmal darzulegen und mit der Bitte um Input, ob es so richtig ist – auch noch einmal auszuführen versuche.

1. Wie ich es bisher verstanden habe

Der wesentliche Unterschied zwischen dem Gehirn und dem übrigen Körper ist aus meiner Sicht die Blut-Hirn-Schranke.

Dazu aus der Wikipedia:

Als Blut-Hirn-Schranke, auch Blut-Gehirn-Schranke, oder Blut-Hirn-Barriere wird die selektive physiologische Barriere zwischen den Flüssigkeitsräumen des Blutkreislaufs und dem Zentralnervensystem bezeichnet.

Diese besondere Abgrenzung des Bluts (intravasal) vom extravasalen Raum in Gehirn und Rückenmark ist bei allen Landwirbeltieren (Tetrapoda) ausgebildet und ermöglicht es, für das Nervengewebe eigene Milieubedingungen aufrechtzuerhalten (Homöostase). Im Wesentlichen wird diese Barriere von Endothelzellen gebildet, die hier in den kapillaren Blutgefäßen über Tight Junctions eng miteinander verknüpft sind.

Die Blut-Hirn-Schranke schützt das Gehirn vor im Blut zirkulierenden Krankheitserregern, Toxinen und Botenstoffen. Sie stellt einen hochselektiven Filter dar, über den die vom Gehirn benötigten Nährstoffe zugeführt und die entstandenen Stoffwechselprodukte abgeführt werden. Die Ver- und Entsorgung wird durch eine Reihe spezieller Transportprozesse gewährleistet.

Andererseits erschwert diese Schutzfunktion des Gehirns die medikamentöse Behandlung einer Vielzahl neurologischer Erkrankungen, da auch sehr viele Wirkstoffe die Blut-Hirn-Schranke nicht passieren können. Die Überwindung der Blut-Hirn-Schranke ist ein aktuelles Forschungsgebiet, um auch diese Krankheiten behandeln zu können. Nur sehr wenige – ausgesprochen seltene – Erkrankungen stehen in unmittelbarem Zusammenhang mit der Blut-Hirn-Schranke, während sie selbst von einer deutlich höheren Anzahl weitverbreiteter Erkrankungen betroffen sein kann. Eine so hervorgerufene Störung oder Schädigung der Blut-Hirn-Schranke ist eine sehr ernst zu nehmende Komplikation.

Letztendlich ist die Blut Hirn Schranke damit eine Art „Firewall“, die übergriffe auf das Gehirn verhindern soll. Einige Stoffe kommen durch, andere nicht.

Bei den Geschlechtshormonen sieht es so aus, dass Östrogene die Blut-Hirn-Schranke nicht passieren können, Testosteron aber schon. 

Im Gehirn lagert sich das Testosteron an Rezeptoren an, wird dann aromatasiert und damit in Östrogene ungewandelt. Hier liegen spezielle Rezeptoren, die das Östrogen erkennen und dann aufgrund dieses „weiblichen“ Hormons (weiblich aber eben nur in seiner Wirkung _vor_ der Blut-Hirn-Schranke) maskulinisiert.

Da auch Frauen, wenn auch im deutlich geringen Maße Testosteron produzieren (über die Eierstöcke und die Nebennierenrinden) haben sie noch einen besonderen Schutzmechanismus, im Gehirn aus Testosteron aromatisiertes Testosteron wird gebunden und damit unschädlich gemacht. 

Damit liegt eine Situation vor, bei der sich der übrige Körper aufgrund der Wirkung des (sagen wir beim Mann) Testosterons in die männliche Richtung entwickelt, das Gehirn aber zB nicht, weil

  • Das Testosteron an den Rezeptoren im Gehirn nicht richtig erkannt wird
  • im Gehirn ein Fehler bei der Aromatase eintritt und deswegen das Testosteron nicht oder im geringen Maße in Östrogene umgewandelt
  • Das Östrogen nicht richtig erkannt wird 

Daraus würde sich dann Transsexualität (MtF) ergeben. 

Bei einem Transmann könnte:

  • der Rezeptor für Östrogene zu empfindlich sein, so dass geringe Mengen Östrogen stärker wirken
  • die Bindung des Östrogens nicht richtig funktionieren 

Zur Aromatase:

Die Aromatase (auch CYP19A1) ist das Enzym, das in Wirbeltieren die Umsetzung von Testosteron zu Östradiol bzw. von Androstendion zu Östron katalysiert. Diese Aromatisierung von Androgenen ist der entscheidende letzte Schritt bei der Biosynthese der Östrogene.

Aromatase, auch Östrogen-Synthase genannt, ist eine Monooxygenase (EC 1.14.14.1), die Häm als Kofaktor nutzt und zur Cytochrom P450-Familie 19 zählt. Das daher als CYP19A1 bezeichnete Protein ist in der Membran des Endoplasmatischen Retikulums (ER) von Zellen verschiedener Gewebe lokalisiert. Es findet sich in den Gonaden, der Plazenta, der Brustdrüse, dem Fettgewebe und auch im Gehirn sowie in Haut, Knochen und Blutgefäßen. Mutationen im CYP19A1-Gen können zu erblichem Aromatasemangel oder -überschuss führen.[2]

2. Studien, die ich dazu gefunden habe

a) Fernandez et al, 2014: The Genetics of Transsexualism

Transsexualism is a gender identity disorder with a multifactorial etiology.
Neurodevelopmental processes and genetic factors seem to be implicated.
The aim of this study was to investigate the association between the genotype and female-to-male (FtM) and male-to-female (MtF) transsexualism by performing a karyotype and molecular analysis of three variable regions of the genes ERβ (estrogen receptor β), AR (androgen receptor) and CYP19A1 (aromatase).

Methods: We carried out a cytogenetic and molecular analysis in 273 FtMs, 442 MtFs, 371 control females and 473 control males. The control groups were healthy, ageand geographical origin-matched. The karyotype was investigated by G-banding and by high-density (HD) array in the transsexual group. The molecular analysis involved three tandem variable regions of genes ERβ (CA repeats in intron 5), AR (CAG repeats in exon 1) and CYP19A1 (TTTA repeats in intron 4). The allele and genotype frequencies, after division into short (S) and long (L) alleles, were obtained.

Results: No karyotype aberration has been linked to transsexualism (FtM or MtF), and prevalence of aneuploidy (3%) appears to be slightly higher than in the general population (0.53%). Concerning the molecular study, FtMs differed significantly from control females with respect to the median repeat length polymorphism ERβ (P = 0.002) but not to the length of the other two studied polymorphisms. The repeat numbers in ERβ were significantly higher in FtMs than in the female control group, and the likelihood of developing transsexualism was higher (odds ratio: 2.001 [1.15–3.46]) in the subjects with the genotype homozygous for long alleles.
No significant difference in allelic or genotypic distribution of any gene examined was found between MtFs and control males. Moreover, molecular findings presented no evidence of an association between the sex hormone-related genes (ERβ, AR, and CYP19A1) and MtF transsexualism.

 

Aus der Besprechung der Ergebnisse:

FtMs differed from the female control group with respect to the median length of the ERβ polymorphism but not with respect to the length of the other two studied genes. Considering the data for categorical variables of S and L alleles, and the genotypes SS, SL, and LL, we found significant P values for ERβ gene and genotype frequencies but not for AR and CYP19A1 genes. A greater number of CA repeats corresponds to greater probabilities of FtM transsexualism.
In the case of the AR and CYP19A1 genes, we did not find any relationship between the genes and FtM transsexualism. However, in the case of exon 5 of the ERβ gene, and contrary to that described by Ujike et al. (2009), we found a direct relationship between the length of the variable region and FtM transsexualism, so the greater the number of repeats, the greater
the susceptibility to transsexualism.
Although there are numerous studies showing the inverse relationship between the length of the AR gene and the activity of the hormone-receptor complex (Chamberlain et al., 1994; Kazemi-Esfarjani et al., 1995; Tut et al., 1997), there are no data indicating that this same inverse relationship exists in the case of ERβ. Some works bear on this possibility; Kudwa et al., (2006) found that male mice lacking functional Erβ, when treated with the appropriate hormonal priming, display significantly more female-like sexual receptivity than littermates. Yet, lack of functional ERβ receptors does not impair normal expression of adult masculine
sexual behavior.

They found no evidence showing that masculinization is deficient in ERβKO males (rats genetically modified without the Erβ gene); however, they propose that the defeminization process is incomplete in ERβKO males. Our data, like previous studies (Westberg et al.,  2001; Kudwa et al., 2005), support the finding that a functioning ERβ receptor is directly proportional to the size of the analyzed polymorphism, so a greater number of repeats implies greater transcription activation, therefore, an increase in ERβ receptor function, and finally, an increase in defeminization in females. Thus, one could propose that the greater efficiency of the estrogen-receptor complex by a high number of repeats would lead to a reduction in feminization, favoring a defeminization process (Even et al., 1994). Defeminization of the corticospinal tract has been described in FtMs (Rametti et al., 2011)

Das würde bezüglich der FtM-Transsexuellen durchaus passen: Der ERβ Rezeptor ist der Östrogenrezeptor.

b) Fernandez, 2018: Molecular basis of Gender Dysphoria: androgen and estrogen receptor interaction

Highlights
• Estrogen receptors in humans are implicated in gender development.
• In somatically males, interaction between the ERβ and AR is necessary for a typical development of gender.
• In somatically males, specific genotype interactions of α and β ER and AR decrease the odds ratio of gender dysphoria.
• In somatically males, specific genotype interactions between the ERβ and the AR increase the odds ratio of gender dysphoria.
• In somatically females, specific genotypes of α and β ERs are implicated in an independent manner in gender dysphoria.

Abstract
Background
Polymorphisms in sex steroid receptors have been associated with transsexualism. However, published replication studies have yielded inconsistent findings, possibly because of a limited sample size and/or the heterogeneity of the transsexual population with respect to the onset of dysphoria and sexual orientation. We assessed the role of androgen receptor (AR), estrogen receptors alpha (ERα) and beta (ERβ), and aromatase (CYP19A1) in two large and homogeneous transsexual male-to-female (MtF) and female-to-male (FtM) populations.
Methods
The association of each polymorphism with transsexualism was studied with a twofold subject-control analysis: in a homogeneous population of 549 early onset androphilic MtF transsexuals versus 728 male controls, and 425 gynephilic FtMs versus 599 female controls. Associations and interactions were investigated using binary logistic regression.
Results
Our data show that specific allele and genotype combinations of ERβ, ERα and AR are implicated in the genetic basis of transsexualism, and that MtF gender development requires AR, which must be accompanied by ERβ. An inverse allele interaction between ERβ and AR is characteristic of the MtF population: when either of these polymorphisms is short, the other is long. ERβ and ERα are also associated with transsexualism in the FtM population although there was no interaction between the polymorphisms. Our data show that ERβ plays a key role in the typical brain differentiation of humans.

Und aus der Einführung:

The biological actions of sex steroids are mediated by binding to specific nuclear receptors that are members of an extended family of transcription factors. The ligand–receptor complex translocates to the nucleus and promotes sex-specific gene expression (Matthews and Gustafsson, 2003). The direct induction of gene expression via activation of the estrogen receptors (ERs) α and β and the androgen receptor (AR) is the presumptive route for brain masculinization (Sato et al., 2004; Kudwa et al., 2006).

In lower mammals ERα is primarily involved in masculinization, while ERβ has a major function in defeminization of sexual behavior (Kudwa et al., 2006). In rodents, estradiol induces two independent developmental processes: masculinization of neural circuits that will support male-typical reproductive behaviors in adults and defeminization, the loss of the ability to display typical adult female behavior, which is also an active developmental process (McCarthy, 2008). However, it is believed that in non-human primates (Wallen, 2005), as well as in humans (Swaab, 2004), estrogenic metabolites from androgens are not critical to masculinization and defeminization (Wallen, 2005).

All these observations have led to the study of the involvement of DNA polymorphisms of ERβ, ERα, AR, and the aromatase (CYP19A1) in transsexuality (Henningsson et al., 2005; Hare et al., 2009; Ujike et al., 2009; Fernández et al., 2014a,b, 2016; Cortés-Cortés et al., 2017). However, the reported results have been inconsistent or negative (Meyer-Bahlburg, 2011). The lack of agreement between different publications might be due to the small samples studied and/or the heterogeneity of the transsexual population in relation to the onset of the gender dysphoria (i.e. before or after puberty) and sexual orientation.

In order to address all these questions, this work studied the implication of the polymorphisms (CA)n-ERβ (rs113770630), XbaI-ERα (rs9340799), (CAG)n-AR (rs193922933) and (TTTA)n-CYP19A1 (rs60271534) in a large and homogenous sample of 549 early onset androphilic MtFs vs 728 male controls and 425 early onset gynephilic FtMs vs 599 female controls. The analyses were conducted independently for a somatically1 female population (FtM vs female controls) and a somatically male population (MtF vs male controls).

Moreover, because it is unknown whether androgen and estrogen genotypes interact with each other in the genesis of gender, we also analyzed the cross interactions between the AR polymorphism and the other above-mentioned polymorphisms (ERβ, ERα and CYP19A1).

Und aus den Ergebnissen:

Our study resulted in three main findings. First, there is an interaction between the ERβ and AR polymorphisms in the development of atypical gender identity in the MtF population involving an inverse relationship between these polymorphisms. Second, the development of gender in the FtM population is associated with ERβ and/or ERα, but no interaction between these polymorphisms was found. Third, both ERs (α and β) are involved in typical male and female gender development.

The androphilic MtF population presents an inverse relationship between ERβ and AR such that the short AR polymorphism is associated with the L/L ERβ genotype, while, on the contrary, the long AR polymorphism is associated with the S/S ERβ genotype.

Neither of these two polymorphisms on its own is associated with MtF. AR is necessary, but insufficient on its own without ERβ for gender development in MtF. The OR for the interaction between ERβ and AR is heightened by a further association with the XbaI-ERα polymorphism. The highest risk for transsexuality is observed in somatically male individuals carrying a short allele (S) for the ERβ polymorphism together with a G allele for XbaI-ERα and a short allele (S) for AR (SGS genotype) compared to the reference category SAS, short allele (S) for the ERβ together with an A allele for XbaI-ERα and a short allele (S) for AR. However, the differences were not significant when Bonferroni corrections were used

Furthermore, there is a lower risk for transsexuality in somatically male individuals when the short allele (S) for AR is associated with the short allele (S) for ERβ and the A allele for ERα (SAS genotype) compared to the reference category SAL, short allele (S) for the ERβ together with an A allele for XbaI-ERα and a long allele (L) for AR.

Previous studies evaluated polymorphism interactions using a binary logistic regression model (Henningsson et al., 2005; Hare et al., 2009; Ujike et al., 2009). However, cross-interaction analysis between polymorphisms is additionally used here. Our results confirmed those obtained by Henningsson et al. (Henningsson et al., 2005), who suggested an interaction between ERβ and AR, but, what is more, we are able to specify the genotypes involved. We found that fewer CAG repeats in the AR polymorphism increases the risk of transsexuality in comparison to the presence of a higher number of CAG repeats, in interaction with the L/L genotype for ERβ (Table 4). Like Hare et al. (2009), we also found an association between the AR polymorphism and MtF. However, we found, the association was restrictive since a low number of CAG repeats in the AR increases the risk of transsexuality in interaction with the L/L genotype for ERβ (Table 4), and, vice versa, more CAG repeats in the AR increases the risk of transsexuality in interaction with the S/S genotype for the ERβ (Table 5). The Ujike et al. study (Ujike et al., 2009) is not really comparable to ours or other studies mentioned above because it used the average instead of the median to establish long and short alleles. Considering the work of Henningsson et al. (2005) and Hare et al. (2009) together with our results, and taking into account the different origins of the analyzed populations, we could say that the implication of the AR in gender dysphoria in MtF is a consistent finding.

ER α and β also play a key role in the gynephilic FtM population. Specific variants of ERβ and ERα polymorphisms are associated with FtM. Interestingly, there is no interaction between these polymorphisms. ERα, particularly the XbaI-ERα polymorphism, has a significant effect: an A/A genotype implied a greater susceptibility to transsexuality, while genotype A/G showed a protective effect. With respect to the ERβ polymorphism, we found a direct association between the number of CA repeats and transsexuality, confirming our previous report (Fernández et al., 2014a).

One important observation that is directly derived from our analysis is that androphilic MtFs and gynephilic FtMs share a common feature: the involvement of the same polymorphisms in the estrogen receptors. Moreover, these polymorphisms have been related to sexually dimorphic behavior like Alzheimer’s disease, depression, obsessive compulsive disorder, schizophrenia, FtM dysphoria and others (Brandi et al., 1999; Ji et al., 2000; Corbo et al., 2006; Boada et al., 2012; Pan et al., 2014).

Estrogen is an important regulator of brain growth and differentiation and the ERs have a key function in sexual differentiation of brain and behavior (McCarthy, 2008). Additionally, ER α and β are found in both the developing (González et al., 2007) and adult human brain (Osterlund et al., 2000). ER expression shows sex differences (Ishunina et al., 2002).

With respect to the typical masculinization of the brain in XY subjects, it was proposed that direct androgen action on the brain is crucial for the development of a male gender identity and heterosexuality and that the aromatization theory, developed from rodent experiments, would be of secondary importance in our species (Swaab, 2004). In contrast, our results show that both ERs and AR receptors are involved in the development of transsexuality in the androphilic MtF population. As well as by androgens acting on AR, ERs can be activated by estradiol resulting from the aromatization of testosterone (Lephart, 1996). The aromatase enzyme is already present in human fetuses (Naftolin et al., 1971). Moreover, dihydrotestosterone, a reduced testosterone metabolite, can be further metabolized to 5α-androstene-3β,17β-diol, a molecule that preferentially binds to ERβ (Kuiper et al., 1997). Our results show the involvement of ERα and β in the typical development of gender in men and women.

Es liegt also ein Zusammenspiel von den Testosteronrezeptoren und den Östrogenrezeptoren vor, 

„First, there is an interaction between the ERβ and AR polymorphisms in the development of atypical gender identity in the MtF population involving an inverse relationship between these polymorphisms“

Wenn man davon ausgeht, dass „Mann zu Frau“ zuerst sehr schwache Testosteronrezpetoren haben (viele Wiederholungen) und dann auch sehr schwache Östrogenrezeptoren (Wenig Wiederholungen) dann würde da durchaus passen. Dann wird erst sehr wenig Testosteron erkannt und umgewandelt und von diesem wenigen umgewandelten noch weniger als Östrogen erkannt. 

Second, the development of gender in the FtM population is associated with ERβ and/or ERα, but no interaction between these polymorphisms was found.

Bei Frau zu Mann Transseuellen scheinen also bestimmte Faktoren bei den Östrogenrezeptoren vorzuliegen. Möglicherweise reicht es aus, wenn einer von beiden besonders scharf eingestellt ist?

Third, both ERs (α and β) are involved in typical male and female gender development.

Der Unterschied zwischen beiden ist mir insoweit noch nicht ganz klar. 

Wenn ich das so richtig verstehe, dann ist mein Model oben allenfalls eine Annährung und die tatsächlichen Abläufe sind noch wesentlich komplizierter